

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 535-537

Tetrahedron Letters

Transfer hydrogenation of activated ketones using novel chiral Ru(II)-*N*-arenesulfonyl-1,2-diphenylethylenediamine complexes

Damjan Šterk,^a Massoud S. Stephan^b and Barbara Mohar^{a,*}

^aLaboratory of Organic and Medicinal Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia ^bPhosPhoenix SARL, 115 rue de l'Abbé Groult, F-75015 Paris, France

Received 28 September 2003; revised 27 October 2003; accepted 31 October 2003

Abstract—A series of α -keto esters and α, α, α -trifluoromethyl ketones were reduced in high yields and excellent enantioselectivities under Ru-catalysed transfer hydrogenation using novel chiral *N*-arenesulfonyl-1,2-diphenylethylenediamine ligands. © 2003 Elsevier Ltd. All rights reserved.

Chiral α -hydroxy esters are important pharmaceutical intermediates and can be obtained through bioreduction or catalytic hydrogenation of the corresponding ketones.¹ Few literature examples of their preparation involving asymmetric transfer hydrogenation have been described.²

Asymmetric transfer hydrogenation using chiral Ru(II)complexes with nitrogen-based chiral ligands proved to be a powerful method for the preparation of optically active α -arylated and α , β -acetylenic alcohols.³ Such technology uses stable organic molecules such as 2-propanol or the formic acid-triethylamine azeotrope as hydrogen source. Amongst the various types of chiral nitrogen-based ligands, *N*-sulfonyl 1,2-diphenyl-ethylenediamines (RSO₂-DPENs) with R = Ar,⁴⁻⁸ R_F ,⁹ or $R'_2 N^{10}$ in combination with $Ru(II)Cl(\eta^6$ -arene) exihibit high enantiofacial discrimination ability. As proposed by Noyori and co-workers, the reduction takes place via a pericyclic mechanism involving an Ru hydride.¹¹ The RSO_2 functionality in the DPEN series is crucial in the reduction affecting the nucleophilicity of the neighbouring nitrogen and of the NH2 in the Ru complex.

We disclose herein the preparation of a novel series of chiral ArSO₂-DPEN ligands and their use in the Ru(II)-

catalysed transfer hydrogenation of a series of α -keto esters and α, α, α -trifluoromethyl ketones.

Chiral Ru(II)-complexes were prepared in situ at 80 °C in DMF¹⁰ by reacting [RuCl₂(*p*-cymene)]₂ with (1*S*,2*S*)-*N*-ArSO₂-DPEN ligands **1a**–**f**, which were prepared in turn in DCM from the corresponding arenesulfonyl chloride and (1*S*,2*S*)-DPEN followed by chromatographic purification. These catalysts were used to reduce a variety of activated ketones¹² at room temperature using the formic acid–triethylamine azeotrope (Fig. 1, Table 1).

Methyl mandelate was obtained within 4 h in up to 96% ee using 0.5 mol% of the Ru-precursor and ligand 1e or 1f compared to 59% ee using Ts-DPEN. Similar results were obtained for ethyl mandelate. Whether in the presence of a Ru/ligand ratio of 1:1 or 2:1, complex of 1f led to equivalent results. Ethyl 4'-fluoromandelate was

Figure 1. Novel series of (1*S*,2*S*)-*N*-arenesulfonyl-1,2-diphenylethylenediamine ligands based on Ts-DPEN.

Keywords: Asymmetric catalysis; Ketones; Ligands; Ruthenium; Transfer hydrogenation.

^{*} Corresponding author. Tel.: +386-14760250; fax: +386-14760300; e-mail: barbara.mohar@ki.si

^{0040-4039/\$ -} see front matter @ 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2003.10.201

Table	1. As	ymmetric	transfer	hyd	lrogenation	l of	ketones ^a
				-			

Ketone	Ligand	Substrate/catalyst ratio	Time (h)	Conversion (%) ^b	Ee (%) ^b
C ₆ H ₅ COCO ₂ Me	Ts-DPEN	200	4	100	59
	1a	200	4	90	85
	1b	200	4	100	71
	1c	200	4	100	93
	1d	200	4	100	76
	1e or 1f	200	4	100	96
<i>p</i> -F-C₄H₅COCO₂Et	Ts-DPEN	200	4	100	28
F = -00005 = 00002 = 0	1b	200	8	100	27
	1c or 1f	200	4	100	77
	1d	200	8	100	70
	1e	200	4	100	84
<i>p</i> -MeO-C _c H _c COCO ₂ Et	Ts-DPEN	200	24	34	73
F	1b	200	24	44	75
	1c	200	24	58	95
0	Ts-DPFN	40	36	100	82
COCO ₂ Et	15 DI LIV	40	36	100	84
	le or lf	40	36	100	94
<u>\/</u> /	1d	40	36	100	87
		10	20	100	00
$C_6H_5(CH_2)_2COCO_2Et$	Is-DPEN	40	24	100	80
	lb	40	24	100	/6
	lc	40	24	100	68
	le or lf	40	24	100	/4
CH ₃ COCO ₂ Et	Ts-DPEN	40	24	100	86
	1b	40	24	100	86
	1c or 1e	40	24	100	78
	1d	40	24	85	74
	1f	40	24	100	83
(CH ₃) ₂ CHCOCO ₂ Et ^c	Ts-DPEN	200	24	100	9
	1c	200	24	100	20
	1f	200	24	100	44
MeO ₂ C(CH ₂) ₂ COCO ₂ Me	Ts-DPEN	200	4	100	65
	1b	200	4	100	63
	1c or 1f	200	4	100	60
	1d	200	4	50	65
	1e	200	4	100	58
C ₆ H ₅ COCF ₃	Ts-DPEN	100	24	100	42
	1a	100	24	100	42
	1c or 1f	100	24	100	25
C ₄ H ₅ CH ₂ COCF ₂	Ts-DPEN	100	1	100	95
	1b or 1c	100	1	100	96
	1d or 1e	100	1	100	97
	1f	100	1	100	98

^a Reactions were carried out with HCO₂H/Et₃N 5:2 in DMF at 25 °C.

^b Determined by GC analysis using Chirasil-DEX CB (25 m) unless otherwise stated.

^c% Conversion and % ee determined by GC analysis using Chirasil-L-Val (25 m).

obtained in up to 84% ee using **1e** compared to 28% ee using Ts-DPEN. With an electron-donating group on the aromatic ring, the reduction was slower and ethyl 4'-methoxymandelate was obtained in 95% ee using **1c** compared to 73% ee using Ts-DPEN. The reduction of ethyl 2-furoylformate was sluggish requiring 2.5 mol% of Ru catalyst and led, after 36 h, to the corresponding α -hydroxyester in up to 94% ee using **1c** or **1f** compared to 82% ee employing Ts-DPEN. An ACE inhibitor intermediate, ethyl 2-hydroxy-4-phenylbutanoate, was obtained in up to 76% ee compared to 80% ee using Ts-DPEN. The same enantioselectivity (86% ee) was obtained for ethyl lactate using **1b** or Ts-DPEN. However, up to 44% ee was obtained in the reduction of ethyl ketovalinate using **1f** compared to 9% ee using Ts-DPEN. Moderate enantioselectivity (65% ee) was obtained in the reduction of dimethyl 2-oxoglutarate using **1d** or Ts-DPEN.

In the reduction of other activated ketones such as 2,2,2-trifluoroacetophenone, up to 42% ee was attained with **1a** or Ts-DPEN after 24 h. By contrast, the reduction of 1,1,1-trifluoro-3-phenyl-2-propanone took place within 1 h and led to 98% ee using **1f**.

Scheme 1. Synthesis of (1S,2S)-N-aryl-1,2-diphenylethylenediamine ligands.

Attempting to prepare N-(2,4-dinitrophenylsulfonyl)-DPEN ligand **2** following the standard procedure resulted, during purification, in the formation of N-(2,4dinitrophenyl)-DPEN **3a** (Scheme 1).¹³ No activity was observed for the corresponding Ru-complex under the standard conditions in the reduction of methyl benzoylformate as well as using the complex derived from N-(2,6-dinitro-4-trifluoromethylphenyl)-DPEN **3b**, which was prepared subsequently.

In addition, no reduction of methyl benzoylformate occurred using the N-(o-aminophenylsulfonyl)-DPEN ligand **1g** prepared by hydrogenation of the corresponding N-(o-nitrophenylsulfonyl)-DPEN ligand **1a**.

In summary, novel chiral *N*-arenesulfonyl-1,2-diphenylethylenediamine ligands were prepared and excellent enantioselectivities were obtained in the Ru(II)-catalysed transfer hydrogenation of α -keto esters and α, α, α trifluoromethyl ketones. Enhanced enantioselectivity was reached by switching the tosyl group of Noyori's Ts-DPEN ligand with other arenesulfonyl groups and, in general, hindered ligands such as **1f** performed better.

Acknowledgements

We thank the Ministry of Education, Science and Technology of Slovenia for research grant Z1-3374-0104.

References and Notes

- 1. Sheldon, R. A. *Chirotechnology*; Marcel Dekker: New York, 1993.
- 2. Use of 5 mol% Rh(cod)Cl₂ and (1*S*,2*S*)-*N*,*N*'-dimethyl-DPEN: Gamez, P.; Fache, F.; Lemaire, M. *Tetrahedron: Asymmetry* **1995**, *6*, 705–718.
- For reviews, see: (a) Zassinovich, G.; Mestroni, G.; Gladiali, S. *Chem. Rev.* **1992**, *92*, 1051–1069; (b) Noyori, R.; Hashiguchi, S. *Acc. Chem. Res.* **1997**, *30*, 97–102; (c) Palmer, M. J.; Wills, M. *Tetrahedron: Asymmetry* **1999**,

10, 2045–2061; (d) Ohkuma, T.; Noyori, R. Hydrogenation of Carbonyl Groups. In *Comprehensive Asymmetric Catalysis I*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer, 1999; p 199–246.

- For Noyori's Ts-DPEN ligand, see: (a) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 7562–7563; (b) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 2521–2522.
- For Ts-DPEN enclosed dendritic ligands, see: Chen, Y.-C.; Wu, T.-F.; Deng, J.-G.; Liu, H.; Cui, X.; Zhu, J.; Jiang, Y.-Z.; Choi, M. C. K.; Chan, A. S. C. J. Org. Chem. 2002, 67, 5301–5306.
- For polymer-supported Ts-DPEN ligand, see: Bayston, D. J.; Travers, C. B.; Polywka, M. E. C. *Tetrahedron: Asymmetry* 1998, 9, 2015–2018.
- For 2,4,6-ⁱPr₃-C₆H₂SO₂-DPEN ligand, see: Meuzelaar, G. J.; van Vliet, M. C. A.; Maat, L.; Sheldon, R. A. *Eur. J. Org. Chem.* **1999**, *9*, 2315–2321.
- For water-soluble *o* and *p*-HO₃SC₆H₄SO₂-DPEN ligands, see: Bubert, C.; Blacker, J.; Brown, S. M.; Crosby, J.; Fitzjohn, S.; Muxworthy, J. P.; Thorpe, T.; Williams, J. M. J. *Tetrahedron Lett.* **2001**, *42*, 4037–4039.
- (a) Mohar, B.; Valleix, A.; Desmurs, J.-R.; Felemez, M.; Wagner, A.; Mioskowski, C. *Chem. Commun.* 2001, 2572– 2573; (b) Taran, F.; Gauchet, C.; Mohar, B.; Meunier, S.; Valleix, A.; Renard, P. Y.; Crémion, C.; Grassi, J.; Wagner, A.; Mioskowski, C. *Angew. Chem. Int. Ed.* 2002, 41, 124–127.
- 10. Šterk, D.; Stephan, M. S.; Mohar, B. Tetrahedron: Asymmetry 2002, 13, 2605–2608.
- 11. Yamakawa, M.; Ito, H.; Noyori, R. J. Am. Chem. Soc. 2000, 122, 1466–1478.
- α-Keto esters were prepared according to: (a) Nimitz, J. S.; Mosher, H. S. J. Org. Chem. 1981, 46, 211–213; (b) Takao, T. S.; Takashi, M. T.; Hisashi, T. O.; Hiromu, K. S. GB 1 533 491, 1978; Chem. Abstr. 1977, 86, 55465m; (c) Domagala, J. M. Tetrahedron Lett. 1980, 21, 4997–5000.
- 13. Proven by ¹H NMR spectroscopy before and after purification and also by its independent preparation using 1-chloro-2,4-dinitrobenzene; (1S,2S)-*N*-(2,4-dinitrophenyl sulfonyl)-1,2-diphenylethylenediamine (**2**): ¹H NMR δ 4.40 (d, 1H, *CH*NH₂; *J* 3.2 Hz), 4.76 (d, 1H, *CH*NH; *J* 3.2 Hz), 6.98–7.42 (m, 10H, 2×Ph), 7.64 (d, 1H, H-3; *J* 8.6 Hz), 8.08 (dd, 1H, H-5; *J* 8.6, 2.1 Hz), 8.45 (d, 1H, H-6; *J* 2.1 Hz).